Journal of Organometallic Chemistry, 164 (1979) 211–218 © Elsevier Sequoia S.A., Lausanne – printed in The Netherlands

# A 'H NMR STUDY OF THE BONDING IN OLEFIN—PLATINUM COMPLEXES CONTAINING PHENOLATO AND THIOPHENOLATO LIGANDS: EVIDENCE FOR M $\rightarrow$ S $\pi$ -BONDING

MERVYN K. COOPER and DARRYL W. YANIUK

School of Chemistry, University of Sydney, N.S.W. 2006 (Australia)

(Received June 23rd, 1978)

#### Summary

Two series of olefin—platinum(II) complexes, one containing a phenolato and the other a thiophenolato ligand *trans* to the olefin, have been prepared. The <sup>195</sup>Pt—<sup>1</sup>H (olefin) coupling constants have been used in conjunction with the  $pK_a$  of the *trans* ligands to reveal a significant degree of  $\pi$ -acid character in the thiophenolato-sulphur atom.

## Introduction

In a previous paper [1] we suggested that the coupling between the <sup>195</sup>Pt nucleus and the olefinic protons in chelating monoolefin—anilineplatinum(II) complexes may be used as a sensitive probe for assessing the  $\pi$ -acid character of the ligand *trans* to the olefin. We have now prepared two series of isostructural olefin—platinum complexes of the type Pt(IMN)ClL (Fig. 1). In one of these a phenolato ligand lies *trans* to the olefin while in the other a thiophenolato group occupies this position.

By varying the substituents on the phenolato and thiophenolato rings we have provided a range of basicity at the oxygen or sulphur donor atom. The



Fig. 1. Structure of the complexes Pt(IMN)CIL.

resulting changes in J(Pt-C-H(olefin)) are discussed with reference to the bonding between the platinum atom and the Group VI donor.

# Experimental

o-Isopropenyl-N,N-dimethylaniline (IMN) was prepared by methylation [2] of the amine groups of o-isopropenylaniline [3]. The thallium(I) derivatives of the phenols and thiophenols were made by reaction of thallium(I) ethoxide with the appropriate phenol or thiophenol [4].

Pt(IMN)Cl<sub>2</sub>, dichloro-*o*-isopropenyl-*N*,*N*-dimethylanilineplatinum(II), was synthesized from Zeise's salt using the method previously described [1] for Pt(VMN)Cl<sub>2</sub> (VMN = *o*-vinyl-*N*,*N*-dimethylaniline). Found: C, 30.99; H, 3.44; N, 3.21; Cl, 16.9%.  $C_{11}H_{15}NCl_2Pt$  calcd.: C, 30.92; H, 3.54; N, 3.28; Cl, 16.6%.

Infrared absorptions at 340(s) and 307(m) cm<sup>-1</sup> are attributed to the platinum—chlorine stretching vibrations.

### TABLE 1

ANALYTICAL, INFRARED AND MELTING POINT DATA FOR THE COMPLEXES Pt(IMN)CIL

| HL                 | Analysis ( | Found (calc | (Pt-Cl) | Melting |       |     |                   |
|--------------------|------------|-------------|---------|---------|-------|-----|-------------------|
|                    | с          | н           | N       | Cl      | s     |     | <i>point</i> ( 0) |
| Phenol             | 41.78      | 4.37        | 2.90    | 7.3     | _     | 349 | 137d              |
|                    | (42.11)    | (4.16)      | (2.89)  | (7.3)   |       |     |                   |
| 4-Chlorophenol     | 39.73      | 3.70        | 2.56    | 14.2    | _     | 340 | 135d              |
|                    | (39.31)    | (3.69)      | (2.70)  | (13.7)  |       |     |                   |
| 3,5-Dichlorophenol | 36.44      | 3.38        | 2.84    | 19.3    | —     | 348 | 165-168d          |
|                    | (36.87)    | (3.28)      | (2.53)  | (19.2)  |       |     |                   |
| 3-Nitrophenol      | 38.10      | 3.78        | 5.09    | 7.3     | -     | 348 | 172–174d          |
|                    | (38.53)    | (3.43)      | (5.29)  | (6.7)   |       |     |                   |
| 4-Hydroxybenz-     | 41.80      | 4.14        | 2.55    | 7.0     | _     | 339 | 135—138d          |
| aldehyde           | (42.15)    | (3.93)      | (2.73)  | (6.9)   |       |     |                   |
| 4-Nitrophenol      | 38.34      | 3.55        | 5.17    | 6.8     | —     | 343 | 178–182d          |
|                    | (38.53)    | (3.61)      | (5.29)  | (6.7)   |       |     |                   |
| 2,6-Dichlorophenol | 36.61      | 3.27        | 2.57    | 19.4    | —     | 347 | 169—171d          |
|                    | (36.87)    | (3.28)      | (2.53)  | (19.2)  |       | •   |                   |
| Pentafluorophenol  | 35.49      | 2.77        | 2.66    | 6.5     |       | 350 | 158—160d          |
|                    | (35.52)    | (2.63)      | (2.44)  | (6.2)   |       |     |                   |
| Pentachlorophenol  | 30.89      | 2.29        | 2.16    | 32.5    | _     | 349 | 181-184d          |
|                    | (31.07)    | (2.30)      | (2.13)  | (32.4)  |       |     |                   |
| 2,4-Dinitrophenol  | 35.35      | 3.18        | 7.13    | 6.0     |       | 340 | 183—187d          |
|                    | (35.52)    | (3.16)      | (7.31)  | (6.2)   |       |     | 200 2014          |
| 3-Methylthiophenol | 41.91      | 4.22        | 2.70    | 7.0     | 6.1   | 343 | 226d              |
|                    | (41.98)    | (4.31)      | (2.72)  | (6.9)   | (6.2) |     |                   |
| 4-Methylthiophenol | 40.26      | 4.02        | 2,94    | 9.0     | 6.0   | 344 | 223d              |
|                    | (41.98)    | (4.31)      | (2.72)  | (6.9)   | (6.2) |     |                   |
| Thiophenol         | 40.22      | 3.94        | 2.69    | 7.5     | 5.9   | 343 | 210d              |
|                    | (40.76)    | (4.02)      | (2.80)  | (7.1)   | (6.4) |     | 2100              |
| 4-Chlorothiophenol | 37.95      | 3.57        | 2.46    | 13.5    | 5.4   | 34: | 253d              |
|                    | (38.14)    | (3.58)      | (2.62)  | (13.2)  | (6.0) |     |                   |
| 4-Nitrothiophenol  | 37.12      | 3.65        | 4.85    | 6.9     | 5.6   | 334 | 237d              |
|                    | (37.40)    | (3.51)      | (5.13)  | (6.5)   | (5.9) |     | 20.4              |
| Pentafluorothio-   | 34.37      | 2.53        | 2.54    | 6.9     | 5.4   | 339 | 187d              |
| phenol             | (34.55)    | (2.56)      | (2.37)  | (6.0)   | (5.4) |     | -0.4              |
| Pentachlorothio-   | 29.92      | 2.14        | 1.85    | 32.3    | 4.3   | 337 | 221d              |
| pbenol             | (30.33)    | (2.25)      | (2.08)  | (31.6)  | (4.8) |     |                   |

The phenolato and thiophenolato complexes were also prepared by the previously described method [1]. Analytical, infrared and melting point data for these compounds are given in Table 1.

The 'H NMR spectra of IMN and its platinum(II) complexes were recorded on a Varian HA 100, 100 MHz spectrometer using DMF- $d_7$  solutions with TMS as internal standard.

Infrared spectra of the complexes were run on a Perkin–Elmer PE 457 grating infrared spectrophotometer calibrated with polystyrene film. The frequencies recorded are believed to be accurate to  $\pm 2 \text{ cm}^{-1}$ .

Melting points were measured in air on a Reichert hot-stage melting point apparatus with microscope and are corrected.

Microanalyses were performed by the Australian Microanalytical Service, Division of Applied Organic Chemistry, C.S.I.R.O., University of Melbourne.

## **Results and discussion**

The investigation reported in this paper originated in an attempt to assess, through changes in allylic coupling [5], the extent of the interaction of the  $\pi$ -bonds  $(2p\pi, 2p\pi^*)$  of the olefin with the atomic orbitals of the platinum. It was assumed that by altering the nature of the ligand *trans* to the olefin the degree of  $\pi$ -character in the carbon—carbon bond of the olefin would vary. Since allylic coupling is allegedly [6] transmitted primarily through the  $\pi$ -system of the olefin it was expected that a correlation might exist between the allylic coupling constants and the  $\pi$ -acid character of the *trans* ligand. In fact, as Table 2 shows,  $\pi$ -allylic coupling was reduced, on coordination of the olefin, to a negligible level and was thus quite insensitive to the nature of the *trans* donor group.

### TABLE 2

INTERPROTON COUPLING CONSTANTS (Hz) a FOR COMPLEXES OF THE TYPE Pt(IMN)CIL

| HL                    | J <sub>1,2</sub> | J <sub>1,3</sub> | J <sub>2,3</sub> |  |
|-----------------------|------------------|------------------|------------------|--|
| Phenol                | 0.4              | 0.2              | Ь                |  |
| 4-Nitrophenol         | 0.5              | 0.1              | ь                |  |
| 2,6-Dichlorophenol    | 0.4              | 0.4              | <b>b</b> .       |  |
| Pentafluorophenol     | 0.4              | 0.1              | ь                |  |
| Pentachlorophetic     | 0.4              | Ъ                | ь                |  |
| 2,4-Dinitrophenol     | 0.6              | < 0.1            | 0.7              |  |
| 3-Methylthiophenol    | 0.4              | 0.1              | 6                |  |
| T'iophenol            | 0.4              | 0.1              | 0.9              |  |
| 4-Chlorothiophenol    | 0.4              | 0.1              | 0.8              |  |
| 4-Nitrothiophenol     | 0.5              | 0.1              | 0.6              |  |
| Pentafluorothiophenoi | 0.4              | <0.1             | 0.7              |  |
| Pentachlorothiophenol | 0.5              | 0.1              | 0.3              |  |
|                       | CH3(1)           | _H(2)            |                  |  |

<sup>a</sup> Proton numbering scheme

.<sup>b</sup> Not measurable.

| TABLE 3                     |   |
|-----------------------------|---|
| 195pt-1H COUPLING CONSTANTS | 6 |

| HL                    | pK <sub>a</sub> | J(Pt(1))   | J(Pt(2))   | J(Pt(3))   |
|-----------------------|-----------------|------------|------------|------------|
| Phenol                | 10.00           | 29.0(2.24) | 64.9(4.64) | 69.5(3.99) |
| 4-Chlorophenol        | 9.38            | 30.6(2.25) | 65.2(4.68) | 70.2(4.03) |
| 3-Nitrophenol         | 8.40            | 32.0(2.29) | 66.5(4.77) | 72.0(4.14) |
| 3,5-Dichlorophenol    | 8.25            | 32.1(2.29) | 67.4(4.78) | 72.0(4.15) |
| 4-Hydroxybenzaldehyde | 7.62            | 32.0(2.30) | 67.7(4.80) | 72.1(4.17) |
| 4-Nitrophenol         | 7.15            | 33.1(2.31) | 68.4(4.85) | 72.9(4.22) |
| 2,6-Dichlorophenol    | 6.72            | 32.9(2.17) | 68.7(4.63) | 74.0(3.91) |
| Pentafluorophenol     | 5.52            | 34.0(2.20) | 71.5(4.77) | 75.7(4.11) |
| Pentachlorophenol     | 4.74            | 35.0(2.18) | 72.4(4.72) | 75.8(4.04) |
| 2,4-Dinitrophenol     | 4.11            | 35.2(2.28) | 72.5(4.88) | 77.0(4.28) |
| 3-Methylthiophenol    | 6.58            | 23.0(2.23) | 56.6(4.88) | 63.0(4.33) |
| 4-Methylthiophenol    | 6.52            | 22.9(2.23) | 56.8(4.85) | 62.7(4.32) |
| Thiophenol            | 6.43            | 23.0(2.24) | 57.7(4.88) | 63.0(4.33) |
| 4-Chlorothiophenol    | 5.90            | 23.6(2.27) | 58.9(4.91) | 64.4(4.38) |
| 4-Nitrothiophenol     | 4.50            | 23.8(2.38) | 58.7(5.07) | 64.7(4.61) |
| Pentafluorothiophenol | 2.68            | 25.9(2.23) | 60.6(4.97) | 67.3(4.44) |
| Pentachlorothiophenol | 2.26            | 25.9(2.22) | 60.2(4.92) | 67.0(4.38) |

 $^{195}\mbox{Pt}{-}^1\mbox{H}$  COUPLING CONSTANTS (Hz) AND CHEMICAL SHIFTS ( $\delta$  (ppm) in parentheses) FOR COMPLEXES OF THE TYPE Pt(IMN)ClL

On the other hand, it has been authoritatively stated [7-9] that the coupling of <sup>195</sup>Pt to other nuclei of spin  $\frac{1}{2}$  depends on the overlap and occupancy of orbitals involving the 6s atomic orbital of platinum. If this is so, such coupling provides a prote into the  $\sigma$ -component of the platinum—olefin bond. Since  $\pi$ -acceptance and therefore  $\sigma$ -donation, by the olefin would, in the Dewar— Chatt—Duncanson scheme of olefin bonding [10], be influenced by the  $\pi$ -acidity of the *trans* ligand, it was reasoned that the  $\pi$ -acidity of the latter ligand would be reflected by J(Pt-C-H(olefin)).

An important feature of the compounds studied is that any change in the  $\pi$ -interaction due to the *trans* ligand is confined to a single  $\pi$ -acid ligand (the olefin group). This is in contrast to many other systems where the effect of small variations in the  $\pi$ -acidity of a given type of ligand is diluted by the presence of more than one of the  $\pi$ -acceptor ligands in which the effect is being observed (e.g infrared studies of substituted metal carbonyl complexes [11]).

The following argument assumes that the oxygen donor of the phenolato ligands is incapable of  $\pi$ -acceptance so that variations arising on changing the substituents on the phenyl rings are transmitted to the platinum by  $\sigma$ -bonding alone.

The changes in  $pK_a *$  of the phenolato ligands as the electron-donating-

<sup>\*</sup> There are probably better indicators of the  $\sigma$ -donor ability of the *trans* ligand than  $pK_a$  e.g. gas phase proton affinity or ionization potential. A lack of such data for the phenolato and thiophenolato ligands has restricted us to the use of  $pK_a$ , a free energy function which embraces in this case an unwanted entropy term.

The enthalpy change,  $\Delta H(HL)$ , in the formation of proton complexes is alleged [12] to reflect the difference in  $\sigma$ -electron density on the donor atoms while the entropy changes which accompany the association of protons with anions are roughly equal. To verify the latter assumption Barnett [13] examined the thermodynamic data for a wide range of anions, using literature values obtained under the same experimental conditions [14]. The variation of  $\Delta S(HL)$  was found to be  $\pm 6$ e.u. about a mean value of 26 e.u. This range of  $\pm 6$  e.u. is equivalent to  $\pm 1.3 \text{ pK}_a$  units which is not a sufficient variation to affect our arguments based on the use of  $pK_a$ .



Fig. 2. Variation of  $J(1^{95}$ Pt-1H(1)) with the pKa of HL in complexes of the type Pt(IMN)ClL.

|                         |                |              | <br>· — |   | <br> |
|-------------------------|----------------|--------------|---------|---|------|
|                         | O-donors (=)   | S-donors (•) |         | _ | <br> |
| Slope                   | $-1.0 \pm 0.2$ | -0.7 ± 0.1   | <br>    |   |      |
| Intercept               | 39 ± 1         | 28 ± 1       |         |   |      |
| Correlation coefficient | 0.97           | 0.98         |         |   |      |

withdrawing groups are varied is shown in Table 3. As the ligands become more basic there is a greater transfer of  $\sigma$ -electron density to the platinum, and this is reflected in a lower value of J(Pt-C-H(olefin)). That is, build up of electron density on the metal discourages  $\sigma$ -donation from the olefin and hence lowers the coupling constant. This trend is shown on plotting  $pK_a$  (phenolato) vs. J(Pt-C-H(olefin)) (Fig. 2-4).

If a sulphur atom, with empty, low-lying 3d orbitals, is now substituted for the oxygen donor a series of isostructural \* thiophenolato complexes is obtained (Table 3). The plots of  $pK_a$  (thiophenolato) vs. J(Pt-C-H(olefin)) (Fig. 2-4) for this series of compounds also show a linear relationship, but differ

<sup>\*</sup> Evidence to suggest that the phenolato and thiophenolato complexes are isostructural in their coordination geometry is provided by the single  $\gamma(Pt-Cl)$ , the similarity of the <sup>1</sup>H NMR spectra (Table 3) and our previous structural analyses of the compounds Pt(VMN)Cl(OC<sub>6</sub>F<sub>5</sub>) and Pt(VMN)Cl(SC<sub>6</sub>F<sub>5</sub>) [1].



Fig. 3. Variation of J(195 Pt-1 H(2)) with the  $pK_a$  of HL in complexes of the type Pt(IMN)ClL.

|                         | O-donors (=)       | S-donors (•) |  |
|-------------------------|--------------------|--------------|--|
| Slope                   | -1.4 ± 0.2         | -0.8 ± 0.4   |  |
| Intercept               | 7 <del>9</del> ± 1 | 62 ± 2       |  |
| Correlation coefficient | 0.99               | 0.92         |  |

from those of the phenolato series in that they have a lower (absolute) slope.

As might be expected, towards lower basicity the influence of both types of trans ligand on J(Pt-C-H(olefin)) is diminished and therefore J(Pt-C-H(olefin)) increases.

It is significant that in Fig. 2–4 the J(Pt-C-H(olefin)) values for the thiophenolato complexes lie under those for the phenolato compounds. Since the  $pK_a$  of any thiophenolato ligand is lower than its phenolato counterpart it might have been expected, from a consideration of  $\sigma$ -bonding alone, that the thiophenolato plots would lie above those of the phenolato complexes.

The fact that they can not be rationalized on the basis of a degree of  $d\pi \rightarrow d\pi$  interaction between the metal and the sulphur. This would lead to competition with the  $\pi^*$  orbitals of the olefin for metal  $\pi$ -electron density and would, by synergism, reduce the  $\sigma$ -donation from the olefin, and hence lower J(Pt-C-)



Fig. 4. Variation of J(195 pt-1H(3)) with the pK<sub>a</sub> of HL in complexes of the type Pt(IMN)ClL.

|                         | O-donors (=) | S-donors (•)   |  |
|-------------------------|--------------|----------------|--|
| Slope                   | -1.3 ± 0.1   | $-1.0 \pm 0.3$ |  |
| Intercept               | 83 ± 1       | 70 ± 1         |  |
| Correlation coefficient | 0.99         | 0.98           |  |

H(olefin)) in the thiophenolato series.

It is also apparent that for each olefinic proton the lines for the phenolato and thiophenolato complexes converge towards higher  $pK_a$  values (Fig. 2-4). As the  $pK_a$  of the thiophenolato ligands increases so does the electron density on the sulphur, making it increasingly unattractive to the  $\pi$ -electrons of the platinum. The  $\pi$ -acceptor ability of the sulphur therefore decreases with increasing  $pK_a$  and it approaches oxygen in character in that at higher  $pK_a$ values bonding between the platinum and sulphur tends towards a purely  $\sigma$ interaction.

There is no indication from this work of the absolute degree of  $\pi$ -acidity of the thiophenolato sulphur atom. Both the formal 2+ charge on the platinum and the negative charge on the thiophenolato ligands militate against  $\pi$ -back

bonding. However it seems from the trends in J(Pt-C-H(olefin)), that the support atom of the thiophenolato ligands has some degree of  $\pi$ -acidity.

## Acknowledgements

We thank Dr. J.E. Nemorin for recording the 100 MHz <sup>1</sup>H NMR spectra and Matthey Garrett Pty. Ltd. for the loan of platinum metal.

## References

- 1 M.K. Cooper, N.J. Hair and D.W. Yaniuk, J. Organometal. Chem., 150 (1978) 157.
- 2 M.G. Seeley, R.E. Yates and C.R. Noller, J. Amer. Chem. Soc., 73 (1951) 772.
- 3 C.M. Atkinson and J.C.E. Simpson, J. Chem. Soc., (1947) 808.
- 4 N.V. Sidgwick and L.E. Sutton, J. Chem. Soc., (1930) 1461.
- 5 S. Sternhell, University of Sydney, private communication.
- 6 L.M. Jackman and S. Sternhell, Applications of NMR Spectroscopy in Organic Chemistry, 2nd Ed., Pergamon, London, 1969, p. 312 ff.
- 7 P.S. Braterman, Inorg. Chem., 5 (1966) 1085.
- 8 L.E. Manzer, J. Chem. Soc. Dalton, (1974) 1535.
- 9 H. Kato, Bull. Chem. Soc. Japan, 44 (1971) 348.
- 10 (a) M.J.S. Dewar, Bull. Soc. Chim. France, 18 (1951) C79; (b) J. Chatt and L.A. Duncanson, J. Chem. Soc., (1953) 2939.
- 11 R.J. Angelici and C. Ingemanson, Inorg. Chem., 8 (1969) 83.
- 12 F.J.C. Rossotti in J. Lewis and R.G. Wilkins (Eds.), Modern Coordination Chemistry, Interscience, New York, 1960, p. 53.
- 13 G.H. Barnett, Ph.D. thesis, University of Sydney, 1974.
- 14 L.G. Sillén and A.E. Martell, Stability Constants, Chem. Soc. Special Publication, No. 17, London.